登录

AlphaGo 与柯洁华山论剑,人工智能一手遮天指日可待?

劳务招聘
0 1438

1

如今,人工智能的劲风势不可挡,甚至在政府报告上都划为重点。回顾2016年人工智能界的顶级盛事,人机围棋大战绝对榜上有名。面对人类棋手的失利,机器人 AlphaGo 乘胜追击、再下战书,挑战围棋顶级选手柯洁的消息一夜间走进世界的聚光灯下。然而懒人族表示:机器人都玩转围棋了!做家务可比下围棋简单多了,你们怎么还没造出一款能解放人类的全能家务机器人呢? 

其实,人工智能的发展还要打败很多大小怪兽。即便是战胜了人类围棋高手的AlphaGo目前也仅具备弱人工智能水平!虽然科幻电影里被机器人接管的世界距离我们还有些遥远,但科研人员们正在努力“打怪升级”,争取让能为人类提供服务的机器人早日来到我们身边。 假如你说:“机器人,把桌上的苹果拿去洗洗,给大家吃吧!”为了听懂并服从这个命令,机器人到底要具备哪些本领呢? 

 首先,机器人要理解这句话的含义。这就涉及到语音识别和自然语言处理两个研究领域。语言识别,就是把机器人听到的声波转成文字。自然语言处理,就是把一句按人类习惯说的话,解析成计算机能理解的信息。这一过程并不容易——Amazon近期发布的智能音箱Echo,重点攻关了远距离以及有噪音情况下的语音识别这一难题,但也只能进行有限的对话,更不用说像人类一样理解对话中复杂的情境和上下文了。 

假设机器人已经正确识别出这句话。接下来的难题是:什么叫“桌子”?“苹果”是什么?什么叫“洗洗”?谁是“大家”?什么叫“吃”?这些都属于人类知识库里的常识问题。 人和人的沟通大量依赖常识,而这些都是机器不具备的。这种常识的学习对机器人而言是挑战,因为这些知识既无法预测,也无法泛化,更无法预先植入。机器人必须具备某种持续的自主学习能力,才能推理出用户的命令究竟是什么意思。 

 自然语言处理过程中的上下文问题,个人常识的搜集、表达和存储,以及如何利用这些常识实现人机自然交流——这些都是英特尔中国研究院的小伙伴们目前正在努力研究的课题。其中最大的挑战在于发现信息之间的相关性,并在适当时机,激活最可能相关的信息,为人机交流补足上下文。相信不久后就有更会聊天的机器人来陪伴你啦! 假设机器人能正确识别出桌子和苹果,下一步就是找到苹果。这就涉及到计算机视觉难题——就是让计算机长出一双人类的眼睛,能分辨出人可以看到的景象,提取出人能提取的信息。假设机器人能够完美捕捉三维信息,接下来就是如何理解“看到”的图像。 

发表评论

0 个回复